
CoCoNet
Release 1.1.0

Oct 22, 2021





Contents

1 Citation 3

2 Description 5

3 Install 7
3.1 Install latest PyPi release (recommended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Basic usage 9

5 Checking the installation 11

6 Contribute 13
6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4 Analysis workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Indices and tables 19

i



ii



CoCoNet, Release 1.1.0

Contents 1

https://travis-ci.org/Puumanamana/CoCoNet
https://codecov.io/gh/Puumanamana/CoCoNet
https://coconet.readthedocs.io/
https://www.codacy.com/manual/Puumanamana/CoCoNet?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=Puumanamana/CoCoNet&amp;utm_campaign=Badge_Grade
https://anaconda.org/bioconda/coconet-binning


CoCoNet, Release 1.1.0

2 Contents



CHAPTER 1

Citation

Cédric G Arisdakessian, Olivia Nigro, Grieg Steward, Guylaine Poisson, Mahdi Belcaid, CoCoNet: An Efficient Deep
Learning Tool for Viral Metagenome Binning, Bioinformatics, 2021;, btab213, https://doi.org/10.1093/bioinformatics/
btab213

3

https://doi.org/10.1093/bioinformatics/btab213
https://doi.org/10.1093/bioinformatics/btab213


CoCoNet, Release 1.1.0

4 Chapter 1. Citation



CHAPTER 2

Description

CoCoNet (Composition and Coverage Network) is a binning method for viral metagenomes. It leverages deep learning
to abstract the modeling of the k-mer composition and the coverage for binning contigs assembled form viral metage-
nomic data. Specifically, our method uses a neural network to learn from the metagenomic data a flexible function for
predicting the probability that any pair of contigs originated from the same genome. These probabilities are subse-
quently combined to infer bins, or clusters representing the species present in the sequenced samples. Our approach
was specifically designed for diverse viral metagenomes, such as those found in environmental samples (e.g., oceans,
soil, etc.).

5



CoCoNet, Release 1.1.0

6 Chapter 2. Description



CHAPTER 3

Install

3.1 Install latest PyPi release (recommended)

pip3 install --user numpy
pip3 install --user coconet-binning

For more installation options, see the documentation

7

https://coconet.readthedocs.io/getting-started.html


CoCoNet, Release 1.1.0

8 Chapter 3. Install



CHAPTER 4

Basic usage

CoCoNet is available as the command line program. For a list of all the options, open a terminal and run:

coconet run -h

For more details, please see the documentation on ReadTheDocs

9

https://coconet.readthedocs.io


CoCoNet, Release 1.1.0

10 Chapter 4. Basic usage



CHAPTER 5

Checking the installation

A test dataset is provided in this repository in tests/sim_data. To quickly verify the installation worked, you can simply
download the repository and run the test command as follows:

git clone https://github.com/Puumanamana/CoCoNet
cd CoCoNet
make test

11



CoCoNet, Release 1.1.0

12 Chapter 5. Checking the installation



CHAPTER 6

Contribute

• Issue Tracker: github

• Source Code: github

6.1 Installation

6.1.1 Pre-requisites

CoCoNet was tested on both MacOS and Ubuntu 18.04. To install and run CoCoNet, you will need:

1. python (>=3.5, recommended: 3.7)

2. pip3, the python package manager or the conda installer.

If you encounter any issue during the installation, you should retry in a fresh environment (with conda or virtualenv)
with the recommended python version (3.7).

6.1.2 Install the latest release on PyPi

You can install CoCoNet, from the Python Package Index. To install it, you simply need to run the following command
(you can omit –user if you’re working in a virtual environment).

# Install numpy until scikit-bio issue #1690 is resolved
pip install --user numpy
# Install CoCoNet
pip3 install --user coconet-binning

6.1.3 Install the development version

You can also install the most up to date version with the following command:

13

https://github.com/Puumanamana/CoCoNet/issues
https://github.com/Puumanamana/CoCoNet
https://pypi.org/project/coconet-binning/


CoCoNet, Release 1.1.0

# Install numpy until scikit-bio issue #1690 is resolved
pip install --user numpy
# Install CoCoNet
git clone https://github.com/Puumanamana/CoCoNet.git && cd CoCoNet
pip install --user .

If you encounter any issue with the development version, you should try with the latest release as the development
version might not have been thoroughly checked.

6.1.4 Install with bioconda

CoCoNet is available in bioconda. You will need miniconda or anaconda installed on your computer. CoCoNet can be
installed using the following command:

# Install in a new environment
conda create -n coconet -c bioconda -c conda-forge coconet-binning
# Switch environment
conda activate coconet

6.1.5 Using Docker

Alternatively, CoCoNet can be pulled directly from DockerHub. Assuming your contigs are located in
/data/contigs.fasta and your indexed bam files are in /data/.bam and /data/.bai, then you can run CoCoNet with the
following command:

docker run -v /data:/workspace nakor/coconet coconet run --fasta contigs.fasta --bam
→˓*.bam

6.2 Usage

6.2.1 Inputs

CoCoNet’s main running mode bins contigs assembled using multiple samples. The minimum required is:

1. The assembly in fasta format, generated from the raw reads with your favorite assembler (e.g. metaspades,
megahit, idb-ud, metavelvet, . . . )

2. The alignments in the bam format. These files can be generated from the raw fastq reads and the assembly using
an aligner such as bwa or bowtie2.

6.2.2 Running CoCoNet

The CoCoNet package comes with 4 subcommands to run different part of the algorithm:

• preprocess: Filter the assembly and coverage based on minimum length, and prevalence. In addition,
alignments are filtered based on quality, SAM flag, coverage and template length.

• learn: Train the neural network to predict whether two DNA fragments belong to the same genome.

• cluster: Cluster the contigs using the previously trained neural network.

• run: Runs all the previous steps combined (recommended)

14 Chapter 6. Contribute

https://docs.conda.io/en/latest/miniconda.html
https://anaconda.org/
https://github.com/ablab/spades
https://github.com/voutcn/megahit
https://github.com/loneknightpy/idba
https://github.com/hacchy/MetaVelvet
https://github.com/lh3/bwa
https://github.com/BenLangmead/bowtie2


CoCoNet, Release 1.1.0

To run CoCoNet with the default parameters, you simply need to provide the assembly and the bam coverage files:

coconet run --fasta scaffolds.fasta --bam cov/*.bam --output binning_results

You can see the usage information for each subcommand by typing coconet <subcommand> -h, where <sub-
command> is either preprocess, learn, cluster or run. For more details about the options, see the hyperparameters
section

You can use the --continue flag to resume an interrupted run. However, depending where your run was interrupted,
you might have corrupted files, in which case you would need to either re-run from the start or delete the corrupted
file.

6.2.3 Outputs

The output data folder contains many files. The ones you might be interested in are:

• The binning outcome, bins_*.csv with 2 columns: the first is the contig name, and the second is the bin number.

• The log file, coconet.log, that contains all of the runtime information, run parameters and filtering information.

• The run configuration config.yaml with the run parameters.

• The filtered alignments (both .bam and .h5 formats) and the filtered assembly (.fasta).

• The list of contigs that were set aside because they didn’t pass the prevalence or minimum length filter, ex-
clude.tsv. The first column is the contig name, the second is the reason why the contig was excluded, and the
remaining field is the values corresponding to the filtering criteria (length or list of coverage values).

6.3 Hyperparameters

CoCoNet’s parameters were set in order to put an emphasis on bin homogeneity. However, depending on the research
goal, the user might want to emphasize on either one. Mainly, three parameters can be adjusted to improve bin
completeness at the cost of possibly decreased homogeneity:

1. The fragment length, --fragment-length

2. The minimum prevalence --min-prevalence (i.e. the number of samples a given contig appear in)

3. The minimum number matches between two contigs connected by an edge in the contig-contig graph, 𝜃,
--theta

4. The minimum edge density required for a cluster to be considered as a coherent bin, 𝛾, --gamma2

Decreasing the values of 𝜃 or 𝛾 (respectively 80% and 75% by default) decreases the binning stringency. This can,
therefore, improve the completeness of viruses with higher variance in their k-mer or coverage patterns, albeit at
the cost of possibly decreased homogeneity. Similarly, increasing the fragment length can minimize the variance in
the k-mer and coverage distributions between contigs of the same species and, consequently, improve completeness.
Nevertheless, a longer fragment length (or greater prevalence) thresholds can result in more contigs being assigned
to singleton bins simply because they were not long enough to be processed. In addition, increasing the minimum
prevalence will results in selecting contigs that are more broadly present across samples. Intuitively, a high prevalence
provides a more robust information for binning; indeed, two contigs co-occurring in two samples provide a less robust
evidence than if they were co-occurring in 5 samples. Naturally, decreasing the values of 𝜃, 𝛾, the fragment length or
the minimum prevalence can result in more homogeneous but less complete bins.

A few other parameters can be worth tuning. However, their effect has not yet been assessed thoroughly and were
empirically chosen.

6.3. Hyperparameters 15



CoCoNet, Release 1.1.0

6.3.1 Preprocessing

• --min-ctg-length (default: 2048): Discard short contigs. Shorter contig’s composition can have local
pattern that very different than the complete genome. As a result, they might generate more false positives. In
CoCoNet, --min-ctg-length needs to be longer than the --fragment-length since contigs are split
into fragments during the clustering phase.

• --min-prevalence (default: 2): Contig that appear in few samples are harder to bin since less information
can be leveraged from their co-occurrence with other contigs. Therefore increasing the --min-prevalence
should increase the binning quality (but filter out more contigs).

• --flag (default: 3596): Sam flag filtering (corresponds to -F flag in samtools). The flag meaning can be
explored here

• --min-mapping-quality (default: 30): Discards any alignment with a low quality

• --min-aln-coverage (default: 50): Discards any alignment with less than x % aligned nucleotides

• --tlen-range (default: no filtering): Discards any paired alignments with a template length outside this
range

6.3.2 Learning

• -k (default 4, recommended range is between 3-6): kmer size. It will impact the composition feature. The
longer the kmer and the more specific it will be to a particular genome. However, for short fragments, it might
generate very sparse vectors that might prevent the network to learn appropriately. As such, for kmer of size 5
or greater, we recommend increasing the fragment length as well.

• --wsize (default: 64) and --wstep (default: 32) control the smoothing of the coverage input. Coverage is
smoothed using an averaging window of length wsize and step wstep.

• --n-train (default: 4M): Number of training examples. Training examples are generated by randomly
pairing contigs’ fragments. Because there are many potential pairs (depending on the number and length of the
contigs), we usually can generates millions of example. In our tests, the training usually starts to plateau after a
few hundred thousands examples. Therefore, we set the number of training examples to 1 million.

• The neural network learning hyperparameters: --batch-size (default: 256) and --learning-rate (de-
fault: 1e-4).

• The neural network architecture: These values were empiriclly chosen and should not require any tuning. They
are the number of neurons in the composition layer --compo-neurons (default: [64, 32]), in the coverage
layer --cover-neurons (default: [64, 32]) and in the merging layer --merge-neurons (default: 32).
The convolution in the coverage network is controlled by the number of filters --cover-filters (default:
32), the kernel size --cover-kernel (default: 7) and stride --cover-stride (default: 3).

• --load-batch (default: 100): does not affect the accuracy but simply controls how many examples are
loaded at once in the memory. It should be used if the memory is very limited.

• --n-frags (default: 30): Number of fragments to split the contigs in for the clustering phase. More frag-
ments should make the contig-contig comparisons more trustworthy. The number of non-redundant fixed-size
fragments in a contig is however limited, and the value of this variable will likely plateau or even be detrimental
is this value becomes to high.

• --features (default: coverage composition): The features to use for binning. We recommend to use both
coverage and composition since the network can learn from two separate sources to group DNA fragments.
However, if the dataset contains very few samples (<3) and if the coverage information is of low quality,
composition-only binning might be a good alternative.

16 Chapter 6. Contribute

https://broadinstitute.github.io/picard/explain-flags.html


CoCoNet, Release 1.1.0

6.3.3 Clustering

• --max-neighbors (default: 250): The maximum number of neighbors to consider to compute the adjacency
matrix. Increasing it should make the results more accurate but might also significantly increase computing time.

• --vote-threshold (default: None): When set, contigs are compared against each other using a voting
scheme. Instead of summing the network probabilities across all fragments pairs between the two contigs, a
hard threshold is used to set each comparion to 0 or 1.

• --theta (default: 0.8): Minimum percent of edges between two contigs to form an edge between them.

• --algorithm (default: leiden): Community detection or clustering algorithm to perform the binning. If
“spectral” is chosen, then --n-clusters needs to be set.

• --gamma1 (default: 0.3): CPM optimization value for the first run of the Leiden clustering.

• --gamma2 (default: 0.4): CPM optimization value for the final run of the Leiden clustering.

• --n-clusters (no default): When spectral clustering is used, it corresponds to the maximum bins in the
data.

6.4 Analysis workflow

Here we present a full pipeline example for running CoCoNet from the raw reads to final bins. We assume that
you have paired-end illumina reads available in the data/ directory. Each sample is named with the convention
<sample>_R{1,2}.fastq.gz.

6.4.1 Trimming

The first step consists in quality trimming and filtering your reads. Many tools can be used for this step, such as fastp
or trimmomatic. Below is a trimming example with fastp. Note that the parameters need to be tuned to your specific
case. FastQC and MultiQC can be very useful in that regard.

#!/usr/bin/env bash

# SAMPLES is an environment variable containing the sample names
# (e.g.: export SAMPLES="sample1 sample2")

for sample in $SAMPLES; do
fastp \
-i data/${sample}_R1.fastq.gz -I data/${sample}_R2.fastq.gz \
-o ${sample}-trimmed_R1.fastq.gz -O ${sample}-trimmed_R2.fastq.gz

done

6.4.2 Assembly

To assemble your reads, you have many choices. One of the most accurate for metagenomics is metaSPAdes. However
if you have a lot of samples and/or high coverage, metaSPAdes will require a significant amount of time and memory,
in which case Megahit can be a good alternative.

# combine all samples
cat data/*-trimmed_R1.fastq.gz > forward.fastq.gz
cat data/*-trimmed_R2.fastq.gz > reverse.fastq.gz

(continues on next page)

6.4. Analysis workflow 17

https://github.com/OpenGene/fastp
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://multiqc.info
https://cab.spbu.ru/software/meta-spades
https://github.com/voutcn/megahit


CoCoNet, Release 1.1.0

(continued from previous page)

# run metaspades
metaspades.py \
-1 forward.fastq.gz -2 reverse.fastq.gz \
-o assembly-outputs

6.4.3 Coverage

To compute contig coverage, we can align the trimmed reads on the assembled contigs with tools such as bwa or
bowtie2:

mkdir coverage

# Build index
bwa index -p coverage/index assembly-outputs/scaffolds.fasta

for sample in $SAMPLES; do
bwa mem -p coverage/index data/${sample}-trimmed_R*.fastq.gz \
| samtools view -bh \
| samtools sort -o coverage/${sample}.bam
samtools index coverage/${sample}.bam coverage/${sample}.bai

done

6.4.4 Binning

You can finally use CoCoNet and bin your contigs:

coconet run --fasta assembly-outputs/scaffolds.fasta --bam coverage/*.bam --output
→˓binning

The binning assignment are then available in the file binning/bins-*.csv.

18 Chapter 6. Contribute

http://bio-bwa.sourceforge.net/bwa.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml


CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19


	Citation
	Description
	Install
	Install latest PyPi release (recommended)

	Basic usage
	Checking the installation
	Contribute
	Installation
	Usage
	Hyperparameters
	Analysis workflow

	Indices and tables

